
Communication Networks in Geographically Distributed
Software Development

Marcelo Cataldo
Research and Technology Center

Bosch Corporate Research
Pittsburgh, PA 15212, USA

marcelo.cataldo@us.bosch.com

James D. Herbsleb
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213, USA

jdh@cs.cmu.edu

ABSTRACT
In this paper, we seek to shed light on how communication
networks in geographically distributed projects evolve in
order to address the limits of the modular design strategy.
We collected data from a geographically distributed soft-
ware development project covering 39 months of activity.
Our analysis showed that over time a group of developers
emerge as the liaisons between formal teams and geo-
graphical locations. In addition to handling the communica-
tion and coordination load across teams and locations, those
engineers contributed the most to the development effort.

Author Keywords
Coordination, Geographically Distributed Product Devel-
opment, Social Network Analysis, Collaboration Tools.

ACM Classification Keywords
D.2.9 [Software Engineering]: Management – productiv-
ity, programming teams. H.5.3 [Information Interfaces
and Presentation]: Groups and Organization Interfaces –
computer-supported cooperative work, organizational de-
sign.

INTRODUCTION
Over the past couple of decades, geographically distributed
work has become pervasive and product development or-
ganizations are no exception. Factors such as access to tal-
ent, acquisitions and the need to reduce the time-to-market
of new products are the driving forces for the increasing
number of global product development projects [24, 27].
Unfortunately, this new trend has its costs. It is well estab-
lished that physical proximity facilitates interactions among
individuals working in R&D organizations [e.g. 2, 21]. Dis-
tance leads to numerous problems in communication and
coordination, and ultimately, impacts the performance of
product development teams [6, 21, 27]. A reduction in
communication has been linked to failure to identify de-

pendencies among work teams resulting in coordination
problems [14, 18, 21, 38].

In order to support distributed teams, it is important to un-
derstand how information flows among teams and across
sites, and the characteristics of the individuals that occupy
key roles in the communication network. In this paper, we
present a longitudinal examination of communication pat-
terns among geographically distributed software develop-
ment teams operating within an organization explicitly de-
signed to allow teams to function as independently as pos-
sible. The data were collected from the two main communi-
cation tools used by the engineering organization and cov-
ered 39 months of development activity.

Our analysis showed several important findings: Over time,
a core group of developers emerged as the liaisons between
formal teams in different geographical locations. This repli-
cates findings such as Allen’s work on gatekeepers [2] that
shows particular individuals play a key role in communica-
tion networks in engineering organizations. However, our
results also show that those individuals in the core not only
perform a critical communication role but also they are the
top contributors to the actual development effort. That is,
all the top performers in the project were part of the core
group of engineers but they also continue to show high pro-
ductivity in technical tasks. Moreover, the communication
core included other developers who rotated in and out of
the core, based on the dependencies of the technical work
they were undertaking at the time. Finally, while the core
developers participated in a disproportionate share of the
communication overall, they were even more dispropor-
tionately involved in cross-site communication than in
same-site communication.

THE LIMITS OF MODULARITY
March and Simon [26] argued that tasks should be divided
into nearly independent parts and when interdependence is
unavoidable, appropriate coordination mechanisms should
be put in place. In the context of product development or-
ganizations, there is a close relationship between dividing
development tasks into nearly independent parts and parti-
tioning the system to be developed into nearly independent
parts. Modularization is the approach typically used to mi-
nimize technical dependencies among the parts of a system

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CSCW’08, November 8–12, 2008, San Diego, California, USA.
Copyright 2008 ACM 978-1-60558-007-4/08/11...$5.00.

579

[10, 16, 37]. Baldwin and Clark [4, page 90] argued that
modularization makes complexity manageable, enables
parallel work and tolerates uncertainty. Moreover, Baldwin
and Clark [4, page 89] argued that a modular design struc-
ture leads to an equivalent modular task structure, where
one or more modules can be assigned to one organizational
unit and work can be conducted almost independently of
others [10].

In the context of software development, this approach was
first articulated by Parnas [31] as modular software design.
Parnas [31] argued that modules ought to be considered
“work items” rather than “subprograms,” emphasizing their
role in allowing development work to continue independ-
ently and in parallel in the different modules. Modulariza-
tion is thought to create loose coupling between tasks,
which is generally considered to be appropriate when teams
are geographically distributed [30].

The modularization argument relies on the assumption that
a simple and obvious relationship exists between the struc-
ture of the product and the structure of the tasks required to
develop the product. Hence, by reducing the technical in-
terdependencies among modules, the modularization theo-
ries argue, task interdependencies are reduced, thereby re-
ducing the need for communication among work groups.

While the modularity approach to coordination has proven
very useful, it is becoming clear that it is by itself insuffi-
cient to resolve coordination problems in product develop-
ment. First, there is recent empirical evidence indicating
that the relationship between product structure and task
structure is not as simple as previously assumed, and the
theorized similarity between those structures diminishes
over time [8]. One important factor is the dynamic nature of
task dependencies in software development. The require-
ments of a software system change as time progresses and,
in many instances, they only become known over time [25].
Uncertainty and change in requirements can result in minor
alterations or cause significant modifications such as adding
or eliminating a feature of the product. These events, typi-
cally, require a well coordinated effort that might affect tens
or hundreds of modules.

Second, reducing communication between teams responsi-
ble for modules can lead to difficulties, since, like most
subsystems [33], modules are rarely fully independent. The
product development literature argues that information hid-
ing, a primary strategy to achieve modularity in software
development, leads to minimal communication between
teams. This in turn causes variability in the evolution of
different components resulting in integration problems [38].
In the context of software development, de Souza and col-
leagues [14] found that information hiding led development
teams to be unaware of others teams’ work, resulting in
coordination problems. Grinter and colleagues [18] reported
similar findings for geographically distributed software
development projects. The authors highlighted that the main
consequence of the reduced need of communication be-

tween teams was increased costs because problems were
discovered too late in the development process.

Finally, the act of developing a software system consists of
a collection of design decisions that often introduce design
or implementation constraints that change the dependencies
among the various parts of the system. These changes can
generate new coordination requirements that are quite diffi-
cult to identify a priori, particularly when they affect the
product architecture [20, 35]. Failure to discover the
changes in coordination needs can have a profound impact
on the quality of the product [13] and on productivity [21].

 “GATEKEEPER” COMMUNICATION NETWORKS
The limitations of the modular design strategy suggest that
communication among teams will be essential in order to
coordinate project work. Organizational and geographic
barriers to communication can be overcome by individuals
in key roles who facilitate and promote the interaction be-
tween teams [2, 3, 19]. Several definitions of those key po-
sitions have been proposed in the product development lit-
erature [19]. Examples are “alliance champion”, “external
liaison”, “gatekeeper”, and “process promoter”. Although
those definitions differ slightly from each other in their
theoretical underpinnings, the overarching theme is that
those individuals perform a different type of activity than
the rest of the members of a R&D group and their task is
critical for the success of a project. Those key people have
access to different sources of information and they are ca-
pable of synthesizing the information in a way useful for
the various groups so they can to better perform their de-
velopment activities [19].

The use of “liaison” or “gatekeepers” to manage the de-
pendencies between teams has also been proposed as a
mechanism for facilitating coordination in geographically
distributed software development [32]. As engineers per-
form their development tasks, critical information and
knowledge about the parts of the system involved in the
tasks at hand is exchanged. As software development tasks
change over time, developers get the opportunity to gain
access to new information and knowledge about the techni-
cal properties of different parts of the system. This system
of social relationships, which we will refer to as a commu-
nication network, is an evolving entity. If gatekeepers are
strategically embedded in the communication networks,
they can acquire the necessary knowledge to discover the
relevant technical and task dependencies.

This paper attempts to shed light on how communication
networks evolve in geographically distributed projects in
order to understand how organizations overcome the limits
of the design modularity strategy. In particular, we examine
the following research questions.

Research Questions
Past research on communication patterns in R&D organiza-
tions suggested the existence of “gatekeeper networks”.
Using the graph theoretic concept of strong components,

580

Allen [2] showed that gatekeepers tended to be part of a
highly clustered group of individuals bridging communica-
tion between disconnected members of the R&D laborato-
ries. Allen’s findings lead to several research questions:

RQ1: Does a highly interconnected group of people take
on a disproportionate share of overall communication?

RQ2: Does a highly interconnected group of people take
on a disproportionate share of cross-site communica-
tion?

Gatekeepers in R&D organizations are also perceived as
very technically competent individuals who are able to in-
terpret several sources of information, translate them and
synthesize them to be consumed by development teams [2,
19]. We are interested in understanding the characteristics
of people who assume a gatekeeper role in software devel-
opment organizations. It has long been known that gate-
keepers are technically capable, but does the gatekeeper
role force them to focus primarily on communication, or do
they also remain highly productive in technical tasks? Are
there other characteristics that also bring individuals into
the core of the communication network?

RQ3: Are the most productive technical people part of
the core of the communication networks?

RQ4: What other characteristics can lead to a technical
person becoming part of core the communication net-
works?

DESCRIPTION OF THE RESEARCH SETTING
We collected data from a software development project of a
large distributed system produced by a company that oper-
ates in the data storage industry. The data covered a period
of about thirty-nine months of development activity and the
first four releases of the product. During that period of time
the company had a maximum of one hundred and nineteen
developers. However, five of them were part of the com-
pany for a period of less than 6 months so we did not con-
sider them in our analysis. The one hundred and fourteen
developers that were included in our analysis were already
part of the development organization prior to the time pe-
riod covered in our analysis or joined the company in the
first four months of the examined time period. The devel-
opers were organized in eight teams and distributed in three
research and development locations. Each team had a man-
ager but the developers did not have formal roles such as
team lead or liaison. All engineers were encouraged to seek
interaction with members of other teams if they considered
it necessary. All the developers worked full time on the
project during the time period covered by our data.

Because of the way work was allocated to teams, this pro-
ject made a near-ideal setting for investigating the limits of
modularity. The organization had been put together to build
a single product, and this was the only product developed
during the period of our study. The product was designed to
be highly modular, and the organization was designed to fit

the structure of the product. Each component was assigned
to a single team, whose members were collocated. Because
of this match between teams and components, virtually all
of the inter-team coordination represents issues that the
modular approach did not resolve.

The development tasks were identified by modification
requests (MRs) which represent defects in the software or
functionality enhancement requests. Software developers
communicated and coordinated their development tasks in
several ways. Opportunities for interaction exist when
working in the same formal team or when working in the
same location. For instance, all the development teams had
periodic meetings as frequent as once or more times a
week. Developers also used a range of communication tools
to interact and coordinate their work such as email, an on-
line-chat system (Internet Relay Chat - IRC), video confer-
ence, and a development task tracking system. One of the
authors interviewed several developers, who identified the
online-chat system (IRC) as the primary communication
means for development and debugging work. The second
most commonly used tool was the MR tracking system
which not only tracked requests as they were opened, as-
signed, and resolved, but provided text chat capability for
each request. In addition, developers indicated that they
used email and video-conferences, but primarily for design
and architectural definition activities. Given those patterns
of communication means usage, we collected communica-
tion and coordination information from the online chat and
the MR-tracking system. In the rest of the document, we
will refer as IRC communication or coordination as such
activities carried out using the online-chat system. We will
refer to as MR communication or coordination when those
activities took place using the MR-tracking system.

Data Collection and Measures
On a daily basis, developers interacted with other engineers
in the same or other laboratories using IRC. The company
established several channels based on formal teams as well
as special projects. For example, team A is responsible for
components 1 and 2 and there is a channel A in IRC. Then,
any engineer that requires information about components 1
and 2 would typically communicate with other engineers in
channel A. In order to preserve the valuable technical in-
formation discussed on IRC, the company logged the chan-
nels associated with formal teams and special projects. This
repository provided the historical data that allowed us to
reconstruct the patterns of interaction and coordination
amongst the developers. In order to identify the relevant
interactions, we used the modification requests as guides.

As part of a larger research project, three raters, blind to the
research questions, examined the IRC logs corresponding to
all the recorded channels and associated with the modifica-
tion requests in our dataset. This data coding effort took
approximately 14 months. We considered the alternative of
using a tool, such as PieSpy [29], to extract relational data
from IRC. Unfortunately the tool was not able to accurately

581

identify which modification request was discussed in a giv-
en interaction. Since our unit of analysis is the modification
request, it was critical that we be able to correctly associate
specific communications with the modification requests to
which they referred, and to eliminate communications that
did not concern modification requests.

Since the work on a MR could extend over days, weeks or
even months, the raters were instructed to examine IRC
logs through out the entire period of time associated with
each MR. When interacting, developers could refer to the
MR id number (e.g. “<developer01> developer02: have you
looked at bug 12345”) or to the problem the MR represents
without any explicit reference to the MR (e.g. “<devel-
oper01> does anyone know why would RPC call 123 re-
turns the error code 12345?”). The raters were given a de-
scription of the problem associated with each modification
request in order to be able to identify the latter type of in-
teractions. The outcome of the data coding process was a
list of time stamped events indicating <developer A> inter-
acted with <developer B>. We assessed the reliability of the
raters’ work by having them code 10% of the MRs by all
three raters. Comparisons of the obtained networks showed
that 98.2% of the networks had the same set of nodes and
edges.

From the list of interactions associated with each modifica-
tion request, we constructed the communication networks
on a monthly basis grouping into a single monthly network
all the interactions among developers from each MR that
occur in each particular month. The nodes in the networks
represent the one hundred and fourteen developers in the
company’s engineering organization. The networks do not
consider managers or other higher level decision making
individuals. If any of the developers did not participate in
any discussion on the IRC logs for a particular month, he or
she would be represented in the network as a node without
connections, in other words, an isolate.

The company also used a MR tracking system to monitor
the progress of development tasks and to facilitate the ex-
change of information and discussion about the develop-
ment tasks. For example, as defects are debugged, develop-
ers post information regarding their findings and might re-
quest information from other developers that would provide
useful feedback. We defined an interaction between devel-
opers i and j only when both i and j explicitly commented in
the MR report. We focused on the developers that explicitly
commented on the MR report because the MR tracking sys-
tem sent email to all the addresses in a CC list every time
an MR is updated. Therefore the number of recipients of
updates could be significantly larger than the set of people
actually discussing the MR. We also ignored comments
automatically generated by the workflow tool (e.g. changes
to the status of the task). Then we used these exchanges of
information to construct communication networks amongst
developers. In this case, the data collection process was
automated by using a script that interacted with the modifi-

cation request tracking system and constructed the monthly
social networks.

We collected several individual-level measures about the
developers. Using the relational data from the MR system
and IRC, we computed two network measures that have
been shown to relate to individual-level performance: the
degree centrality [17] and the network constraint [7]. We
also evaluated several other network measures, such as be-
tweenness centrality and eigenvector centrality, but they
were highly correlated with degree centrality. Demographic
data about the developers such as their programming and
domain experience and level of formal education were col-
lected from archival information provided by the com-
pany’s human resources department.

Measuring individual-level performance in software devel-
opment is not a trivial task. The concept of performance
could be interpreted across different dimensions such as the
amount of code produced, the quality of that produced code
in terms of lack of defects, efficiency and maintainability.
Previous research has proposed different approaches to
measure individual-level software development perform-
ance and, in this study, we focused on measures based on
the amount of code created (see, e.g., Curtis [12]). We used
two measures of performance. First, a measure of contribu-
tion to the development effort was defined in terms of the
number of changes, instead of a more traditional lines-of-
code measure, which allows us to control for variability in
developers’ coding style (e.g. developers who might have a
more verbose versus a more compact coding style). More-
over, the development organization studied encouraged
developers to submit changes to the version control system
that constituted logical pieces of work as a single commit.
Hence, the measure Number of Changes Contributed repre-
sents an appropriate measure of task performance. A second
measure of performance is represented by the number of
modification requests resolved by each developer, Number
of MRs Resolved. Both measures were highly correlated
(0.68, p < 0.01) because all changes to the source code were
represented by a modification request.

RESULTS
We organized the presentation of our results around our
research questions.

RQ1: Does a highly interconnected group of people take
on a disproportionate share of overall communication?
Using the interaction data from IRC and the MR-tracking
system, we constructed monthly communication networks.
Figure 1 shows months 10, 20 and 30 from the IRC data.
The general pattern of the communication networks is a
core-periphery structure [5] suggesting that a particular
group of developers are at the center of the coordination
activities and the exchange of information among engi-
neers. The core-periphery patterns were analytically con-
firmed by using Borgatti and Everett’s [5] method for fit-
ting network patterns to an idealized core-periphery struc-
ture. We used Borgatti and Everett’s continuous model that

582

gives a fit value between 0 and 1. The closer the fit is to 1,
the more similar a particular network is to a core-periphery
structure. The average fit across all 39 months was 0.721
with a minimum fit of 0.568 and a maximum one of 0.858.
The rest of the developers seem to rely solely on interac-
tions with the centrally positioned developers for coordinat-
ing their tasks. Our coordination data from the MR-tracking
system showed the same core-periphery pattern.

Figure 1: Over Time Coordination Patterns using MR system

In other words, the strong core-periphery patterns suggest
the communication network features a highly intercon-
nected and relatively small group (averaging about 26% of
the total) of people who play a special role as communica-
tion hubs.

RQ2: Does a highly interconnected group of people take
on a disproportionate share of cross-site communica-
tion?
The role of the core group in terms of communication
across geographical locations was statistically examined
using an ANOVA analysis to evaluate the frequency of
interaction in a 2 x 3 factorial design where dyads were
classified along two dimensions: same geographical loca-
tion (yes or no) and position in the coordination network
(both nodes in the core, both nodes in the periphery or a
node from each group). We used the MR and IRC coordina-
tion data aggregated at the level of product release and the
core groups on a monthly basis were identified using Bor-
gatti & Everett’s [4] method. Since the observations (the
dyads) are not independent, we assessed the ANOVA re-
sults using a random replication procedure. We used 1000
and 5000 replications and all ANOVA results were consis-
tent.

As expected, we found a statistically significant main effect
of geographical location (F=74.70, p<0.001) with much
more frequent communication within a site than across
sites. We also observed the obvious main effect for position
in the network (F=93.95, p<0.001), which was inevitable
given that frequent communicators end up in the core.

We answered our research question RQ2 by examining the
interaction term, finding a significant effect on the fre-
quency of communication (F=15.51, p<0.001) (see figure
2). Developers in the core handle even a larger proportion
of the cross-site communication than they do communica-
tion within a site.

0.00

0.20

0.40

0.60

0.80

1.00

core-core core-noncore noncore-noncore

Pr
op

or
tio

n
of

 C
om

m
un

ica
tio

n

same site different sites

Figure 2: Proportion of Communication by Network Position
and Location

For illustrative purposes, figure 3 shows the communication
network from month 17 from the IRC coordination data
where the developers are color-coded based on geographi-
cal location. Consistent with the results from the ANOVA
analysis, we observe that a group of developers in the core
of the network act as conduits to other geographical loca-
tions for the developers in the periphery. The same core-
periphery pattern emerged in the case of communication
across formal teams where the core was composed of indi-
viduals from all eight formal teams. The existence of these
gatekeepers replicates the findings Allen [2] encountered in
R&D organizations, and extends them to geographically
distributed teams.

Figure 3: Communication Patterns across Locations

(from IRC data)

RQ3: Are the most productive technical people part of
the core of the communication networks?
We examined this question both qualitatively and quantita-
tively. The qualitative analysis suggested the highest-
performing developers tended be in the core. However,

583

productivity is the outcome of a number of different factors.
Therefore, we also used a multi-level regression model to
examine if the developers’ degree centrality was associated
with productivity.

Figure 4: Coordination Patterns and Productivity

(from IRC data)

Qualitative Analysis
In order to gain a better understanding of the composition
of the core group in the communication networks, we relate
membership to the core group to the developers’ contribu-
tion to the development effort. Past research in software
engineering has found that a large portion of the modifica-
tions to a software system is typically done by a small
number of developers [28]. In our dataset, we encountered
that 18 to 20 developers contributed approximately 50% of
the code in the software system. That group of developers
corresponded to about only 18% of the engineers in the
project. Given this pattern, we ranked the developers in
terms of the amount of code contributed to the development
effort on a monthly basis and we divided the ranking into
five groups with each group corresponding to 20% of the
developers. Figure 4 shows an example of a communication
network (month 17) where each developer is categorized
into a productivity group. We observe that the majority of
the developers in the core are the highest performers while
less performing developers tend to remain in the periphery
of the communication network. However there are several
interesting cases. There are several high performing engi-
neers that are in the periphery and they seem to coordinate
their work minimally. On the other hand, there are low per-
forming individuals positioned very centrally in the com-
munication network.

We performed additional analysis to examine whether the
patterns shown in figure 4 persisted over time. First, we
compared the monthly communication networks along two

dimensions: how many developers were in the core of the
communication network in each month, and how many top
performing developers were part of the core in each month.
Again, we identified the core groups on a monthly basis
using Borgatti & Everett’s [5] method. As depicted in fig-
ure 5, the core group averaged 30, with a minimum number
of 14 and maximum of 42 engineers. In addition, the num-
ber of engineers from the highest productivity group that
were part of the core group in the communication networks
ranged from 9 to 22 over the 39 months of data.

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Month

Pe
rc

en
ta

ge
 o

f M
em

be
rs

hi
p

to
 C

or
e

G
ro

up

All Developers Top Performing Developers

Figure 5: The Size of the Core Group over Time and Top Per-
formers Membership

We also observe in figure 5 that during the first 1/3 of the
time covered by our analysis, the composition of the core
group varied significantly. After month 15, we see that
most of the top performers consistently belong to the core
on the communication network. However, there are several
instances where low productivity developers are also part of
the core coordination group (see Figure 6). We examined
those cases in detail when we address research question 4.

Quantitative Analysis
Our longitudinal dataset had characteristics that render tra-
ditional linear regression models inadequate for statistical
analysis. As is the case with any longitudinal dataset, the
autocorrelation between the observations of the same meas-
ures over time will violate the independence assumptions of
a traditional linear model. In order to correctly deal with the
lack of independence stemming from the longitudinal na-
ture of the dataset, we used a multi-level model [34]. The
multi-level modeling approach allows variation at several
levels within the model. The specification of a multi-level
model includes fixed effects and random effects that may
be applied to multiple variables for a given stream of longi-
tudinal data.

In our analysis, we have a stream of data for each developer
and the model allows variation of both the intercept and the
influence of time and formal team membership on the pro-
ductivity of individuals. Our models included independent
factors that the software engineering literature has found to
be important predictors of productivity such as individual
level attributes of the engineers, characteristics of the de-
velopment tasks and the two network measures: degree

584

centrality and network constraint. As described earlier, we
used two different individual-level productivity measures.
Overall, the pair-wise correlations had acceptably low lev-
els (below 0.20) with the exception of the correlation be-
tween network centrality and network constraint which was
0.421 for the IRC data and 0.274 for the MR data.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

Month

C
om

po
sit

io
n

of
 C

or
e

G
ro

up

Highest High Average Low Lowest

Figure 6: Composition of the Core Group over Time by Pro-

ductivity Levels

In table 1, we report the effects of the various factors on the
Number of Changes Contributed productivity measure us-
ing the IRC (models I & II) and MR (models III & IV) co-
ordination data to compute the network centrality and net-
work constraint measures. Table 2 shows the coefficients of
the multi-level regression using the Number of MRs Re-
solved as individual-level performance measure.

Communication over IRC
 Model I Model II

Intercept 2.621** 2.715**
Time 0.008** 0.007**
Education (log) -0.031 -0.027
Domain Exp. (log) 0.079** 0.076**
Avg. Change Size (log) -0.474** -0.434**
Degree Centrality 2.621** 2.818**
Network Constraint 0.317**
AIC 7010 6931
Deviance Explained 51.03% 51.60%

Communication over MR-Tracking System
 Model III Model IV

Intercept 3.569** 3.576**
Time 0.003** 0.003**
Education (log) -0.025 -0.025
Domain Exp. (log) 0.051+ 0.048+
Avg. Change Size (log) -0.532** -0.531**
Degree Centrality 1.378** 1.389**
Network Constraint 0.031
AIC 7485 7491
Deviance Explained 47.71% 47.68%
(+ p < 0.10, * p < 0.05, ** p < 0.01)

Table 1: Results of the Multi-level Regression for the effects on
Number of Changes Contributed

The results from table 1 suggest that over time, developers
become more productive in terms of changes submitted as
the statistically significant and positive coefficient on the
variable Time indicates. Consistent with prior research [12,
13], higher levels of Domain Experience increased the
number of changes submitted by the developers on a
monthly basis. We also examined the impact of program-
ming experience but the measure was highly correlated to
domain experience and had similar impact to the one re-
ported for domain experience. As expected, the larger the
average size of the modifications made by the developers,
the lower the number of changes those developers contrib-
ute to the development effort as indicated by the negative
coefficient of the Avg. Change Size measure.

In terms of the network measures, our results are consistent
with past research showing that individuals centrally posi-
tioned in the communication network were more likely to
exhibit higher levels of performance [36]. However, we
also found that those individuals that were embedded in a
highly interconnected ego network (Network Constraint)
were even more productive, suggesting the relevance of
belonging to the core group in the communication network.
Although our analysis is at the individual-level, it is impor-
tant to relate these findings to past research showing that
geographically distributed groups or organizations with
hierarchical social networks tended to coordinate better [22]
and performed better [11] than those with core-periphery or
flatter structure. An important factor that may be at play
here is the dynamic nature of work dependencies that
emerges in software development and potentially in other
knowledge-intensive activities. Such an environment could
reduce significantly the routineness of the tasks and in-
crease uncertainty around the tasks, leading to non-
hierarchical patterns of communication. In fact, Ahuja and
Carley [1] showed that hierarchical social networks devel-
oped in virtual organizations when task exhibited higher
levels of routineness.

The results reported in table 2 were consistent with those
reported in table 1 with the exception of the impact of Time
which has a negative impact on productivity. This finding
suggest that over time, engineers tend to resolve less modi-
fication requests, possibly because the MRs require more
development effort or they represent more complex tasks.

In sum, the results from the qualitative and quantitative
analysis suggest that membership in the core is strongly
associated with productivity level of the developer. In an
effort to explore the nature of the relationship between pro-
ductivity and degree centrality and network constraint, we
investigated the personal characteristics of developers and
how they varied across levels of productivity. Our thought
was that there are numerous factors that could explain this
relationship. For instance, the software engineering litera-
ture suggests that top developers typically have an order of
magnitude better performance than average developers
[12]. Such superior skill might make those developers the
key source of technical knowledge and, consequently, they

585

become involved in the communication and coordination
structures of the project. We compared the productivity
groups across several individual-level factors: programming
and domain experience, education level, and tenure in the
company. Our analysis did not find any statistically signifi-
cance differences across the groups.

Communication over IRC
 Model I Model II

Intercept 0.984** 1.020**
Time -0.011** -0.005**
Education (log) -0.027 -0.020
Domain Exp. (log) 0.190* 0.296*
Avg. Change Size (log) -0.102** -0.129**
Degree Centrality 4.246** 3.949**
Network Constraint 0.891**
AIC 8460 8141
Deviance Explained 24.27% 27.16%

Communication over MR-Tracking System
 Model III Model IV

Intercept 1.744** 1.806**
Time -0.007** -0.007**
Education (log) -0.054 -0.055
Domain Exp. (log) 0.163** 0.164**
Avg. Change Size (log) -0.105** -0.113**
Degree Centrality 2.939** 2.900**
Network Constraint 0.623+
AIC 9204 9172
Deviance Explained 17.44% 17.76%
(+ p < 0.10, * p < 0.05, ** p < 0.01)

Table 2: Results of the Multi-level Regression for the effects on
Modification Requests Resolved

RQ4: What other characteristics can lead to a technical
person becoming part of the core of communication
networks?
We also investigated other factors that may cause develop-
ers to enter the core. Our qualitative examination of the data
(see figures 4 through 6) indicated that some developers
who were not high performers occasionally entered the core
group, at least temporarily. In order to investigate this as-
pect of the core group composition in more detail, we ex-
amined the nature of the development tasks across the pro-
ductivity groups. Specifically, we looked at differences in
the average number of files affected by a modification re-
quest. The thought was that task dependencies may force
developers into the center of the communication network,
independently of their productivity, because of the need to
interact and coordinate with individuals from different
teams that had the relevant knowledge of different parts of
the software system.

Our analysis revealed important differences across produc-
tivity groups in terms of the average number of source code
files affected by modification requests. In fact, for several
months in our data (e.g. 3, 8, 17, 27, and 38), we found that
some developers in the lowest two productivity groups
worked on modification requests that affected, on average,

the highest number of source code files. This finding is
clearly depicted in figure 6 which shows that in certain
months (3, 8, 17, 27, and 38) the composition of the core
group involves a higher number of lower productive engi-
neers. Our examination of the modification requests and
changes to the source code indicated that for those months,
the low-performing developers worked on features of the
system that cut across numerous subsystems such as tracing
and security functionalities. Modifications in that type of
functionalities require coordinating work across several
groups of individuals. These data suggest that it is the de-
pendencies in the technical work that appear to drive some
of the lower performing developers temporarily to the core
of the communication network. It is important to highlight
that these findings refer to only five low-performing devel-
opers. The other low-performing engineers did not exhibit
the same task and interactions patterns. One unexpected
observation is that several lower-performing developers
who worked on cross-cutting concerns tended to move up
one or two categories in the productivity ranking after the
months where they were part of the core group of the com-
munication network. However, the improvement in produc-
tivity did not translate into a consistent membership in the
core group of the communication networks over time.

DISCUSSION
In this paper, we have presented a longitudinal analysis of
communication activities in a geographically distributed
software development project and the results provide three
main contributions to the CSCW literature. Prior work has
shown that gatekeepers are technically competent and they
are often first level managers in development organizations
[e.g. 2]. Our analyses showed that the core people in the
studied project are, by and large, not just technically com-
petent but, in fact, they had major direct contributions to the
development effort. In other words, the individuals in the
core are also highly productive. This is a novel result be-
cause past research suggests that the communication hubs
would evolve into communication specialists and, conse-
quently, reduce their level of productivity.

Our findings also showed that the communication hubs play
an even greater role in communicating across sites than
within a single site. Giving that distributed product devel-
opment organizations are becoming the norm, also it is im-
portant to further develop our understanding about how
information flows through distributed projects. Our results
are a step forward in that direction.

Finally, our study showed that the core group consisted of
two kinds of individuals: not only gatekeepers, also indi-
viduals drawn at least temporarily into the hub by their
work assignments, which is the new result. This suggests
that communication tools must retain sufficient role flexi-
bility to permit this movement, rather than locking people
into core or non-core roles.

586

Limitations of the study
While the development organization we studied was a good
choice for research seeking to explore the limits of modu-
larity as a tool for coordination, these very same character-
istics – new development effort, single product, organiza-
tion designed around modular product structure – make it
somewhat unusual. In organizations with multiple products
and less precise mapping of modules onto teams, the effects
observed here may be diminished by other drivers of com-
munication and performance. It is also not clear how far
beyond software development work these results can be
generalized. While it seems reasonable to speculate that
product structure will profoundly influence coordination in
any product development organization [20, 35], software
development may have unique characteristics.

It is also worth pointing out that we did not have the oppor-
tunity to observe all communication, for example face-to-
face, telephone, and video conference. While our interviews
gave us some confidence that much of the technical com-
munication occurred in the channels we observed, the pat-
terns of interactions across those channels we did not have
access to may have looked different. The effects of central-
ity that we observed, for example, may only apply to cen-
trality in networks over particular kinds of textual media.
Finally, we recognize that our productivity measures have
limitations but it is important to notice that the measures
used in this study are well known and commonly used in
software engineering research.

Implications for Tool Design
The analysis and results reported in this study suggests sev-
eral research directions in relation to tools to support dis-
tributed product development organizations. First, tools
could focus their attention on a project-level view of coor-
dination, leveraging data stored in software development
repositories (e.g. MR tracking systems) to assess the pro-
ject-wide coordination patterns of geographically software
development teams. Several tools that depict information
regarding the structure of communication and coordination
patterns in relation to work dependencies have recently
been proposed [e.g. 15]. However, our study show those
tools could be extended by combining communication pat-
terns data with information about contributions or progress
of tasks which would allow specific stakeholders, such as
project managers or team leads, to identifying potential
problem areas and take appropriate corrective measures, if
necessary.

Secondly, communicators in the core remained highly pro-
ductive, this suggest that even for hub communicators, tools
must support easy movement between technical work and
communication. Finally, it perhaps also calls into question
the degree of difficulty that interruptions cause – it has not
prevented the most frequent communicators from being
highly productive. While others have argued that interrup-
tions are important for managers [23], our results might
suggest that the information gained from interruptions may
be undervalued. Alternatively, it may suggest that some

people are more able to swap context than others. These
topics represent important issues for future research in the
area of tool design for supporting distributed development
organizations.

Implications for Future Research
The finding that core developers play a particularly large
role in facilitating communication across sites may repre-
sent an effective adaptation or it may mean that the com-
munication core is likely to become a bottleneck. In this
project, where conditions allowed for an organizational
design specifically adapted to the product structure, we
would expect that cross-site coordination requirements
would be relatively low compared to many projects. With
much larger volumes of communication to deal with, it is
not clear that core members can continue to act as cross-site
hubs while also maintaining their very high productivity.
Future research on other organizational arrangements
should be able to shed light on this.

More research is required to better understand the relation-
ship between development tasks that promote interactions
among engineers and the potential gains in development
productivity. In addition, future research should examine if
tasks such as the implementation of cross-cutting concerns,
are mechanisms that could promote the development of
communication and coordination conduits among formal
teams and development locations.

In our research setting, the “liaisons” emerged over time
from each development group, contrary to view typically
discussed in the literature where these key roles are for-
mally established [3, 19, 32]. In fact, exploratory analyses
of communication patterns in distributed software devel-
opment organizations suggest that when “liaisons” are for-
mally defined minimal communication channels emerge
between formal teams and geographic locations [9]. Indi-
viduals in such formal roles, with different expectations and
responsibilities from the rest of the engineers in a software
development effort, might face important challenges stem-
ming from the dynamic nature of technical and task de-
pendencies. Future research should examine the differential
impact, if any, of formal versus emergent “liaisons” roles.

ACKNOWLEDGEMENTS

We gratefully acknowledge support by the National Science
Foundation under Grants IIS-0414698 and IIS-0534656, the
Software Industry Center at Carnegie Mellon University
and its sponsors, especially the Alfred P. Sloan Foundation.

REFERENCES
1. Ahuja, M.K. and Carley, K.M Network Structure in Vir-

tual Organizations. Org. Science, 10, 6 (1999), 741-757
2. Allen, T.J. Managing the Flow of Technology. MIT

Press (1977).

587

3. Ancona, D.J. and Caldwell, D.F. Bridging the boundary:
external activity and performance in organizational
teams. Administrative Science Quarterly, 37 (1992).

4. Baldwin, C.Y. and Clark, K.B. Design Rules: The Pow-
er of Modularity. MIT Press (2000).

5. Borgatti, S.P. and Everett, M.G. Models of Core Periph-
ery Structures. Social Networks, 21 (1999), 375-395.

6. Brown, S.L. and Eisenhardt, K.M. Product Develop-
ment: Past Research, Present Findings, and Future Di-
rections. Academy of Management Review, 20, 2 (1995).

7. Burt, R.S. Structural Holes: The Social Structure of
Competition. Harvard University Press, 1992.

8. Cataldo, M. et al. Identification of Coordination Requir-
ements: Implications for Design of Collaboration and
Awareness Tools. Proc. CSCW’06, ACM Press (2006).

9. Cataldo, M. and Herbsleb, J.D. Communication patterns
in geographically distributed software development and
engineers' contributions to the development effort. Proc.
CHASE’08, ACM Press (2008).

10.Conway, M.E. How do committees invent? Datamation,
14, 5 (1968), 28-31.

11.Cummings, J.N and Cross, R. Structural Properties of
Work Groups and their Consequences for Performance.
Social Networks, 25 (2003), 197-210.

12.Curtis, B. Human Factors in Software Development. Ed.
by Curtis, B., IEEE Computer Society, 1981.

13.Curtis, B., Kransner, H. and Iscoe, N. A field study of
software design process for large systems. Comm. of
ACM, 31, 11 (1988), 1268-1287.

14.de Souza, C. et al. How a Good Software Practice
Thwarts Collaboration: The multiple roles of APIs in
Software Development. Proc. FSE’04, ACM Press
(2004).

15.de Souza, C. et al. Supporting Collaborative Software
Development through Visualization of Socio Technical
Dependencies. Proc. GROUP’07, ACM Press (2007).

16.Eppinger, S.D. et al. A Model-Based Method for Orga-
nizing Tasks in Product Development. Research in En-
gineering Design, 6 (1994), 1-13.

17.Freeman, L.C. Centrality in Social Networks: I. Concep-
tual Clarification. Social Networks, 1 (1979), 215-239.

18.Grinter, R.E., Herbsleb, J.D. and Perry, D.E. The Geog-
raphy of Coordination Dealing with Distance in R&D
Work. Proc. GROUP’99, ACM Press (1999).

19.Hauschildt, J. and Schewe, G. Gatekeeper and process
promoter: key persons in agile and innovative organiza-
tions. International Journal of Agile Management Sys-
tems, 2 (2000), 96-103.

20.Henderson, R.M. and Clarck, K.B. Architectural Inno-
vation: The Reconfiguration of Existing Product Tech-

nologies and the Failure of Established Firms. Adminis-
trative Science Quarterly, 35, 1 (1990), 9-30.

21.Herbsleb, J.D. and Mockus, A. An Empirical Study of
Speed and Communication in Globally Distributed Soft-
ware Development. Trans. on Soft. Eng., 29, 6 (2003).

22.Hinds, P. and McGrath, C. Structures that Work: Social
Structure, Work Structure, and Coordination Ease in
Geographically Distributed Teams. Proc. CSCW’06,
ACM Press (2006).

23.Hudson, J.M. et al. “I'd be overwhelmed, but it's just one
more thing to do”: availability and interruption in re-
search management. Proc. CHI’02, ACM Press (2002).

24.Karolak, D.W. Global Software Development: Manag-
ing Virtual Teams and Environments, IEEE Computer
Society (1998).

25.Leffingwell, D. and Widrig, D. Managing Software Re-
quirements: A Use Case Approach, 2nd Edition. Addi-
son-Wesley (2003).

26.March, J. and Simon, H.A. Organizations. Wiley, 1958.
27.McDonough, E.F., Kahn, K.B. and Barczak, G. An In-

vestigation of Global, Virtual and Collocated New
Product Development Teams. Journal of Prod. Innova-
tion Mgmt., 18 (2001), 110-120.

28.Mockus, A. and Weiss, D.M. Predicting risk of software
changes. Bell Labs Tech. Journal, Apr 2000, 169-180

29.Mutton, P. Inferring and visualizing social networks on
Internet Relay Chat. In Proceedings of the Information
Visualization Conference (IV ’04), 2004.

30.Olson, G.M. and Olson, J.S. Distance Matters. Human-
Computer Interaction, 15, 2 & 3 (2000), 139-178,

31.Parnas, D.L. On the criteria to be used in decomposing
systems into modules. Comm. of ACM, 15, 12 (1972).

32.Sangwan, R. et al. Global Software Development Hand-
book, Auerbach Publishers (2006).

33.Simon, H.A. The Sciences of the Artificial, MIT Press
(1996).

34.Singer, J.D. and Willet, J.B. Applied Longitudinal Data
Analysis. Oxford University Press, 2003.

35.Sosa, M.E., Eppinger, S.D., and Rowles, C.M. The Mis-
alignment of Product Architecture and Organizational
Structure in Complex Product Development. Manage-
ment Science, 50, 12 (2004), 1674-1689.

36.Sparrowe, R.T. et al. Social networks and the perform-
ance of individuals and groups. Academy of Manage-
ment Journal, 44, 2 (2001), 316-325.

37.Sullivan, K et al. The Structure and Value of Modularity
in Software Design. Proc. FSE’01, ACM Press (2001).

38.Yassine, A. et al. Information Hiding in Product Devel-
opment: The Design Churn Effect. Research in Engi-
neering Design, 14 (2003), 145-161.

588

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

